Skip to contents

buildRAT() reads all pixels of an input raster to obtain the set of unique values and their counts. The result is returned as a data frame suitable for use with the class method GDALRaster$setDefaultRAT(). The returned data frame might be further modified before setting as a Raster Attribute Table in a dataset, for example, by adding columns containing class names, color values, or other information (see Details). An optional input data frame containing such attributes may be given, in which case buildRAT() will attempt to join the additional columns and automatically assign the appropriate metadata on the output data frame (i.e., assign R attributes on the data frame and its columns that define usage in a GDAL Raster Attribute Table).

Usage

buildRAT(
  raster,
  band = 1L,
  col_names = c("VALUE", "COUNT"),
  table_type = "athematic",
  na_value = NULL,
  join_df = NULL,
  quiet = FALSE
)

Arguments

raster

Either a GDALRaster object, or a character string containing the file name of a raster dataset to open.

band

Integer scalar, band number to read (default 1L).

col_names

Character vector of length two containing names to use for column 1 (pixel values) and column 2 (pixel counts) in the output data frame (defaults are c("VALUE", "COUNT")).

table_type

Character string describing the type of the attribute table. One of either "thematic", or "athematic" for continuous data (the default).

na_value

Numeric scalar. If the set of unique pixel values has an NA, it will be recoded to na_value in the returned data frame. If NULL (the default), NA will not be recoded.

join_df

Optional data frame for joining additional attributes. Must have a column of unique values with the same name as col_names[1] ("VALUE" by default).

quiet

Logical scalar. If TRUE``, a progress bar will not be displayed. Defaults to FALSE“.

Value

A data frame with at least two columns containing the set of unique pixel values and their counts. These columns have attribute "GFU" set to "MinMax" for the values, and "PixelCount" for the counts. If join_df is given, the returned data frame will have additional columns that result from merge(). The "GFU" attribute of the additional columns will be assigned automatically based on the column names (case-insensitive matching, see Details). The returned data frame has attribute "GDALRATTableType" set to table_type.

Details

A GDAL Raster Attribute Table (or RAT) provides attribute information about pixel values. Raster attribute tables can be used to represent histograms, color tables, and classification information. Each row in the table applies to either a single pixel value or a range of values, and might have attributes such as the histogram count for that value (or range), the color that pixels of that value (or range) should be displayed, names of classes, or various other information.

Each column in a raster attribute table has a name, a type (integer, double, or string), and a GDALRATFieldUsage. The usage distinguishes columns with particular understood purposes (such as color, histogram count, class name), and columns that have other purposes not understood by the library (long labels, ancillary attributes, etc).

In the general case, each row has a field indicating the minimum pixel value falling into that category, and a field indicating the maximum pixel value. In the GDAL API, these are indicated with usage values of GFU_Min and GFU_Max. In the common case where each row is a discrete pixel value, a single column with usage GFU_MinMax would be used instead. In R, the table is represented as a data frame with column attribute "GFU" containing the field usage as a string, e.g., "Max", "Min" or "MinMax" (case-sensitive). The full set of possible field usage descriptors is:

GFU attrGDAL enumDescription
"Generic"GFU_GenericGeneral purpose field
"PixelCount"GFU_PixelCountHistogram pixel count
"Name"GFU_NameClass name
"Min"GFU_MinClass range minimum
"Max"GFU_MaxClass range maximum
"MinMax"GFU_MinMaxClass value (min=max)
"Red"GFU_RedRed class color (0-255)
"Green"GFU_GreenGreen class color (0-255)
"Blue"GFU_BlueBlue class color (0-255)
"Alpha"GFU_AlphaAlpha transparency (0-255)
"RedMin"GFU_RedMinColor range red minimum
"GreenMin"GFU_GreenMinColor range green minimum
"BlueMin"GFU_BlueMinColor range blue minimum
"AlphaMin"GFU_AlphaMinColor range alpha minimum
"RedMax"GFU_RedMaxColor range red maximum
"GreenMax"GFU_GreenMaxColor range green maximum
"BlueMax"GFU_BlueMaxColor range blue maximum
"AlphaMax"GFU_AlphaMaxColor range alpha maximum

buildRAT() assigns GFU "MinMax" on the column of pixel values (named "VALUE" by default) and GFU "PixelCount" on the column of counts (named "COUNT" by default). If join_df is given, the additional columns that result from joining will have GFU assigned automatically based on the column names (ignoring case). First, the additional column names are checked for containing the string "name" (e.g., "classname", "TypeName", "EVT_NAME", etc). The first matching column (if any) will be assigned a GFU of "Name" (=GFU_Name, the field usage descriptor for class names). Next, columns named "R" or "Red" will be assigned GFU "Red", columns named "G" or "Green" will be assigned GFU "Green", columns named "B" or "Blue" will be assigned GFU "Blue", and columns named "A" or "Alpha" will be assigned GFU "Alpha". Finally, any remaining columns that have not been assigned a GFU will be assigned "Generic".

In a variation of RAT, all the categories are of equal size and regularly spaced, and the categorization can be determined by knowing the value at which the categories start and the size of a category. This is called "Linear Binning" and the information is kept specially on the raster attribute table as a whole. In R, a RAT that uses linear binning would have the following attributes set on the data frame: attribute "Row0Min" = the numeric lower bound (pixel value) of the first category, and attribute "BinSize" = the numeric width of each category (in pixel value units). buildRAT() does not create tables with linear binning, but one could be created manually based on the specifications above, and applied to a raster with the class method GDALRaster$setDefaultRAT().

A raster attribute table is thematic or athematic (continuous). In R, this is defined by an attribute on the data frame named "GDALRATTableType" with value of either "thematic" or "athematic".

Note

The full raster will be scanned.

If na_value is not specified, then an NA pixel value (if present) will not be recoded in the output data frame. This may have implications if joining to other data (NA will not match), or when using the returned data frame to set a default RAT on a dataset (NA will be interpreted as the value that R uses internally to represent it for the type, e.g., -2147483648 for NA_integer_). In some cases, removing the row in the output data frame with value NA, rather than recoding, may be desirable (i.e., by removing manually or by side effect of joining via merge(), for example). Users should consider what is appropriate for a particular case.

Examples

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster")
# make a copy to modify
f <- file.path(tempdir(), "storml_evt_tmp.tif")
file.copy(evt_file,  f)
#> [1] TRUE

ds <- new(GDALRaster, f, read_only=FALSE)
ds$getDefaultRAT(band=1) # NULL
#> NULL

# get the full attribute table for LANDFIRE EVT from the CSV file
evt_csv <- system.file("extdata/LF20_EVT_220.csv", package="gdalraster")
evt_df <- read.csv(evt_csv)
nrow(evt_df)
#> [1] 860
head(evt_df)
#>   VALUE                                            EVT_NAME EVT_LF EVT_PHYS   R
#> 1 -9999                                         Fill-NoData   <NA>     <NA> 255
#> 2  7008                          North Pacific Oak Woodland   Tree Hardwood 203
#> 3  7009 Northwestern Great Plains Aspen Forest and Parkland   Tree Hardwood 192
#> 4  7010       Northern Rocky Mountain Western Larch Savanna   Tree  Conifer 180
#> 5  7011            Rocky Mountain Aspen Forest and Woodland   Tree Hardwood 192
#> 6  7012       Rocky Mountain Bigtooth Maple Ravine Woodland   Tree Hardwood 171
#>     G   B      RED GREEN     BLUE
#> 1 255 255 1.000000     1 1.000000
#> 2 255 171 0.796078     1 0.670588
#> 3 255 138 0.752941     1 0.541176
#> 4 255 148 0.705882     1 0.580392
#> 5 255 138 0.752941     1 0.541176
#> 6 255 138 0.670588     1 0.541176
evt_df <- evt_df[,1:7]

tbl <- buildRAT(ds,
                table_type = "thematic",
                na_value = -9999,
                join_df = evt_df)
#> scanning raster...
#> 0...10...20...30...40...50...60...70...80...90...100 - done.

nrow(tbl)
#> [1] 24
head(tbl)
#>   VALUE COUNT                                                          EVT_NAME
#> 1 -9999   876                                                       Fill-NoData
#> 2  7011    28                          Rocky Mountain Aspen Forest and Woodland
#> 3  7046  4564           Northern Rocky Mountain Subalpine Woodland and Parkland
#> 4  7050   570                              Rocky Mountain Lodgepole Pine Forest
#> 5  7055   889 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland
#> 6  7056   304 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland
#>   EVT_LF EVT_PHYS   R   G   B
#> 1   <NA>     <NA> 255 255 255
#> 2   Tree Hardwood 192 255 138
#> 3   Tree  Conifer 191 255 233
#> 4   Tree  Conifer 163 240 219
#> 5   Tree  Conifer 236 252 204
#> 6   Tree  Conifer 236 252 204

# attributes on the data frame and its columns define usage in a GDAL RAT
attributes(tbl)
#> $names
#> [1] "VALUE"    "COUNT"    "EVT_NAME" "EVT_LF"   "EVT_PHYS" "R"        "G"       
#> [8] "B"       
#> 
#> $row.names
#>  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#> 
#> $class
#> [1] "data.frame"
#> 
#> $GDALRATTableType
#> [1] "thematic"
#> 
attributes(tbl$VALUE)
#> $GFU
#> [1] "MinMax"
#> 
attributes(tbl$COUNT)
#> $GFU
#> [1] "PixelCount"
#> 
attributes(tbl$EVT_NAME)
#> $GFU
#> [1] "Name"
#> 
attributes(tbl$EVT_LF)
#> $GFU
#> [1] "Generic"
#> 
attributes(tbl$EVT_PHYS)
#> $GFU
#> [1] "Generic"
#> 
attributes(tbl$R)
#> $GFU
#> [1] "Red"
#> 
attributes(tbl$G)
#> $GFU
#> [1] "Green"
#> 
attributes(tbl$B)
#> $GFU
#> [1] "Blue"
#> 

ds$setDefaultRAT(band=1, tbl)
#> [1] TRUE
ds$flushCache()

tbl2 <- ds$getDefaultRAT(band=1)
#> 0...10...20...30...40...50...60...70...80...90...100 - done.
nrow(tbl2)
#> [1] 24
head(tbl2)
#>   VALUE COUNT                                                          EVT_NAME
#> 1 -9999   876                                                       Fill-NoData
#> 2  7011    28                          Rocky Mountain Aspen Forest and Woodland
#> 3  7046  4564           Northern Rocky Mountain Subalpine Woodland and Parkland
#> 4  7050   570                              Rocky Mountain Lodgepole Pine Forest
#> 5  7055   889 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland
#> 6  7056   304 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland
#>   EVT_LF EVT_PHYS   R   G   B
#> 1     NA       NA 255 255 255
#> 2   Tree Hardwood 192 255 138
#> 3   Tree  Conifer 191 255 233
#> 4   Tree  Conifer 163 240 219
#> 5   Tree  Conifer 236 252 204
#> 6   Tree  Conifer 236 252 204

ds$close()

# Display
evt_gt <- displayRAT(tbl2, title = "Storm Lake EVT Raster Attribute Table")
class(evt_gt)  # an object of class "gt_tbl" from package gt
#> [1] "gt_tbl" "list"  
# To show the table:
# evt_gt
# or simply call `displayRAT()` as above but without assignment
# `vignette("raster-attribute-tables")` has example output