Skip to contents

Overview of FIESTA Database (DB) tools

FIESTA’s DB tools extract data from FIA’s online publicly-available, comma-delimited files (*.csv or *.zip). FIA’s CSV files are available by state from the FIA DataMart at the following link: https://apps.fs.usda.gov/fia/datamart/datamart.html. Because of FIA’s confidentiality agreement to protect the privacy of landowners, as well as protecting the scientific integrity of FIA’s sample design, the exact coordinates of the sample plot locations are not included in the public data. If the exact coordinates are necessary for your analysis, contact FIA’s Spatial Data Services (https://www.fia.fs.fed.us/tools-data/spatial/index.php).

Objective of tutorial

The objective of this tutorial is to demonstrate the use of FIESTA’s DB tools for accessing FIA data. These tools extract data from FIA Datamart using FIA’s standard evaluations as well as customized evaluations.

An FIA Evaluation is a group of plots within the FIA database that is used for population estimates. An FIA Evaluation represents different inventory spans of data with different stratification and area adjustments for nonreponse. Each Evaluation is determined by the type of estimation (evalType) including: area and tree estimates, growth and mortality estimates, and area change estimates (evalType). These plots are identified by an evalid, which is a unique identifier in the format of a 2-digit State code, a 2-digit year code, and a 2-digit evaluation type code. For example, EVALID ‘491601’ represents the Utah 2016 evaluation for current area estimates.

FUNCTION DESCRIPTION
DBgetCSV() Downloads comma-delimited file (.csv) or downloads and extracts a compressed csv file (.zip) from FIA’s online DataMart.
DBqryCSV() Extracts and queries data from FIA’s online DataMart, either CSV or ZIP files.
DBgetEvalid() Gets evalid for identifying an estimation group of plots for state or checks evalid.
DBgetXY() Extracts XY data from FIA database.
DBgetPlots() Extracts inventory plot data from FIA database.
DBgetStrata() Extracts strata information and total acres by estimation unit from FIA database, including plot-level assignment and a data frame with strata weights by estimation unit.

Set up

First, you’ll need to load the FIESTA library:

Next, you’ll need to set up an “outfolder”. This is just a file path to a folder where you’d like FIESTA to send your data output. For this vignette, we have saved our outfolder file path as the outfolder object in a temporary directory. We also set a few default options preferred for this vignette.

outfolder <- tempdir()

DB Examples

The following examples show how to extract data from FIA’s publicly-available, online DataMart. Data can be returned as R objects or exported to CSV (.csv) files or a SQLite (.sqlite) database. The zip files are extracted on-the-fly from the online website. Web server connections will affect download speeds. We show examples for the following functions:

The following examples extract data from FIA’s online DataMart (https://apps.fs.usda.gov/fia/datamart/datamart.html).

Note that while datsource = 'datamart' is utilized for these examples, datsource can be set to ‘sqlite’ with datsource_dsn set to the local file path for the FIADB file to achieve the same results.

DBgetCSV()

The DBgetCSV function extracts data from FIA’s publicly-available, online DataMart CSV/ZIP files. The zip files are extracted on-the-fly from the online website. Web server connections will affect download speeds.

Example 1: Extract PLOT data for Wyoming and Utah

View Example

DBgetCSV()

## Get plot table for Wyoming
WYplots <- DBgetCSV("PLOT", "Wyoming")
dim(WYplots)
output
## [1] 29460    63
## Get plot table for Wyoming and Utah
WYUTplots <- DBgetCSV(DBtable = "PLOT", 
                      states = c("Wyoming", "Utah"))
table(WYUTplots$STATECD)
output
## 
##    49    56 
## 28826 29460
## Get survey table for Wyoming
WYsurvey <- DBgetCSV("SURVEY", "Wyoming")
WYsurvey
output
##                 CN INVYR P3_OZONE_IND STATECD STATEAB STATENM RSCD
## 1   40383603010690  2011            N      56      WY Wyoming   22
## 2   40383604010690  2012            N      56      WY Wyoming   22
## 3   40383605010690  2013            N      56      WY Wyoming   22
## 4   40409732010690  2014            N      56      WY Wyoming   22
## 5   40409733010690  2015            N      56      WY Wyoming   22
## 6   40409734010690  2016            N      56      WY Wyoming   22
## 7   40409735010690  2017            N      56      WY Wyoming   22
## 8   40409736010690  2018            N      56      WY Wyoming   22
## 9   40409737010690  2019            N      56      WY Wyoming   22
## 10  40409738010690  2020            N      56      WY Wyoming   22
## 11 733348634290487  2021            N      56      WY Wyoming   22
## 12   3001122010690  1984            N      56      WY Wyoming   22
## 13   2701863010690  2000            N      56      WY Wyoming   22
##    ANN_INVENTORY                                          NOTES
## 1              Y                      Annual 01 of 10 subcycles
## 2              Y                      Annual 02 of 10 subcycles
## 3              Y                      Annual 03 of 10 subcycles
## 4              Y                      Annual 04 of 10 subcycles
## 5              Y                      Annual 05 of 10 subcycles
## 6              Y                      Annual 06 of 10 subcycles
## 7              Y                      Annual 07 of 10 subcycles
## 8              Y                      Annual 08 of 10 subcycles
## 9              Y                      Annual 09 of 10 subcycles
## 10             Y                      Annual 10 of 10 subcycles
## 11             Y                                               
## 12             N Periodic inventory FOR CYCLE=1 AND SUBCYCLE=0.
## 13             N Periodic inventory FOR CYCLE=2 AND SUBCYCLE=0.
##           CREATED_DATE       MODIFIED_DATE CYCLE SUBCYCLE          PRJ_CN
## 1  2010-12-19 11:09:24 2021-09-02 08:12:21     3        1 833968357290487
## 2  2010-12-19 11:09:24 2021-09-02 08:12:21     3        2 833968357290487
## 3  2010-12-19 11:09:24 2021-09-02 08:12:21     3        3 833968357290487
## 4  2011-01-14 15:23:21 2021-09-02 08:12:21     3        4 833968357290487
## 5  2011-01-14 15:23:21 2021-09-02 08:12:21     3        5 833968357290487
## 6  2011-01-14 15:23:21 2021-09-02 08:12:21     3        6 833968357290487
## 7  2011-01-14 15:23:21 2021-09-02 08:12:21     3        7 833968357290487
## 8  2011-01-14 15:23:21 2021-09-02 08:12:21     3        8 833968357290487
## 9  2011-01-14 15:23:21 2021-09-02 08:12:21     3        9 833968357290487
## 10 2011-01-14 15:23:21 2021-09-02 08:12:21     3       10 833968357290487
## 11 2020-03-20 12:04:35 2021-09-02 08:12:21     4        1 833968357290487
## 12          2004-05-27 2023-07-25 06:57:43     1        0 833968358290487
## 13          2004-05-27 2023-07-25 06:57:43     2        0 833968358290487

DBqryCSV()

The DBqryCSV function queries a table from FIA’s online publicly-available DataMart. The tables in the query must be specified in the sqltables parameter.

Example: Multiple Uses

View Example

DBqryCSV()

# Get number of plots by inventory year for the state of Wyoming
sql1 <- "SELECT INVYR, COUNT(*) AS NBRPLOTS 
         FROM PLOT 
         WHERE statecd = 56
         GROUP BY INVYR"

nplots1 <- DBqryCSV(sql = sql1, 
                    states = "Wyoming", 
                    sqltables = "PLOT")

head(nplots1)
output
##   INVYR NBRPLOTS
## 1  1984     7724
## 2  2000    10110
## 3  2011     1060
## 4  2012     1077
## 5  2013     1013
## 6  2014     1073
# Get number of plots by inventory year for Vermont and New Hampshire
sql2 <- "SELECT STATECD, INVYR, COUNT(*) NBRPLOTS 
         FROM PLOT 
         WHERE statecd IN(50,33) 
         GROUP BY STATECD, INVYR"

nplots2 <- DBqryCSV(sql = sql2, 
                    states = c("Vermont", "New Hampshire"), 
                    sqltables = "PLOT")

head(nplots2)
output
##   STATECD INVYR NBRPLOTS
## 1      33  1983      697
## 2      33  1997      930
## 3      33  2002      149
## 4      33  2003      141
## 5      33  2004      144
## 6      33  2005      144
# Get number of plots by inventory year for Iowa (stcd=19) that have silver maple (SPCD=317)
sql3 <- "SELECT p.STATECD, p.INVYR, COUNT(*) NBRPLOTS 
         FROM PLOT p 
         JOIN TREE t ON p.CN = t.PLT_CN 
         WHERE p.statecd = 19 AND t.SPCD = 317
         GROUP BY p.STATECD, p.INVYR"

nplots3 <- DBqryCSV(sql = sql3, 
                    states = "IOWA", 
                    sqltables = c("PLOT", "TREE"))

head(nplots3)
output
##   STATECD INVYR NBRPLOTS
## 1      19  1990     1698
## 2      19  1999      114
## 3      19  2000       48
## 4      19  2001      148
## 5      19  2002      236
## 6      19  2003      114

DBgetEvalid()

The DBgetEvalid function gets information for FIA Evaluations.

Example 1: Get most current evalid and inventory years for Wyoming

View Example
WYeval <- DBgetEvalid(states = "Wyoming",
                      evalCur = TRUE)

names(WYeval)
output
##  [1] "states"                 "rslst"                  "evalidlist"            
##  [4] "invtype"                "invyrtab"               "evalTypelist"          
##  [7] "evalEndyrlist"          "invyrs"                 "surveynm"              
## [10] "SURVEY"                 "plotnm"                 "PLOT"                  
## [13] "POP_PLOT_STRATUM_ASSGN" "ppsanm"                 "ppsaflds"              
## [16] "ppsaindb"
WYeval$evalidlist
output
## $Wyoming
## [1] 562101
WYeval$invyrs
output
## $Wyoming
##  [1] 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
WYeval$invyrtab
output
##     STATECD INVYR NBRPLOTS
##       <int> <int>    <int>
##  1:      56  2011     1060
##  2:      56  2012     1077
##  3:      56  2013     1013
##  4:      56  2014     1073
##  5:      56  2015     1061
##  6:      56  2016     1067
##  7:      56  2017     1068
##  8:      56  2018     1019
##  9:      56  2019     1058
## 10:      56  2020     1072
## 11:      56  2021     1058
WYeval$invtype
output
## [1] "ANNUAL"

Example 2: Get most current evaluations for New York for VOL and GRM evalTypes

View Example
NYeval <- DBgetEvalid(states = c("New York"), 
                      evalType = c("VOL", "GRM"),
                      evalCur = TRUE)

names(NYeval)
output
##  [1] "states"                 "rslst"                  "evalidlist"            
##  [4] "invtype"                "invyrtab"               "evalTypelist"          
##  [7] "evalEndyrlist"          "invyrs"                 "surveynm"              
## [10] "SURVEY"                 "plotnm"                 "PLOT"                  
## [13] "POP_PLOT_STRATUM_ASSGN" "ppsanm"                 "ppsaflds"              
## [16] "ppsaindb"
NYeval$evalidlist
output
## $`New York`
## [1] 362201 362203
NYeval$evalTypelist
output
## $`New York`
## [1] "EXPVOL"  "EXPGROW"

DBgetXY()

The DBgetXY function queries XY public coordinate data from FIA’ online publicly-available DataMart or SQLite database.

Example1: Get xy data for the state of Wyoming for the most current evaluation

View Example

DBgetXY()

xydat1 <- DBgetXY(states = "Wyoming", 
                  datsource = "datamart",
                  eval = "FIA",
                  eval_opts = eval_options(Cur = TRUE))

names(xydat1)
output
## [1] "xyCur_PUBLIC"           "xyqry"                  "xy_opts"               
## [4] "pjoinid"                "invyrlst"               "evalInfo"              
## [7] "pop_plot_stratum_assgn"
head(xydat1$xyCur_PUBLIC)
output
##             PLT_CN LON_PUBLIC LAT_PUBLIC STATECD UNITCD COUNTYCD  PLOT
##             <char>      <num>      <num>   <int>  <int>    <int> <int>
## 1: 276307975489998  -105.8203   44.97642      56      3        5 90582
## 2: 282479222489998  -109.9348   44.24736      56      1       29 90583
## 3: 339004000489998  -104.3743   44.61294      56      3       11 88410
## 4: 339004001489998  -104.0644   44.12116      56      3       45 83723
## 5: 339004002489998  -104.3143   44.56942      56      3       11 89681
## 6: 339004003489998  -104.4921   44.52617      56      3       11 85577
##            PLOT_ID COUNTYFIPS
##             <char>     <char>
## 1: PID560300590582      56005
## 2: PID560102990583      56029
## 3: PID560301188410      56011
## 4: PID560304583723      56045
## 5: PID560301189681      56011
## 6: PID560301185577      56011

Example 2: Add a variable in plot table (PLOT_STATUS_CD) and output as a spatial object

View Example
xydat2 <- DBgetXY(states = "Wyoming", 
                  datsource = "datamart",
                  eval = "FIA",
                  eval_opts = eval_options(Cur = TRUE),
                  pvars2keep = c("PLOT_STATUS_CD"),
                  issp = TRUE)

spxy2 <- xydat2$spxy

## Display points with by PLOT_STATUS_CD (1-light blue; 2-brown; 3-blue)
spxy2$color <- ifelse(spxy2$PLOT_STATUS_CD == 2, "brown", 
                      ifelse(spxy2$PLOT_STATUS_CD == 3, "blue", "light blue"))

plot(sf::st_geometry(spxy2['PLOT_STATUS_CD']), pch = 16, cex = .5,
                     col = spxy2$color)
plot

Example 3: Get XY data for Wyoming, inventory years 2015 to 2019

View Example
xydat3 <- DBgetXY(states = "Vermont", 
                  datsource = "datamart",
                  eval = "custom",
                  eval_opts = eval_options(invyrs = 2017:2019),
                  issp = TRUE)

spxy3 <- xydat3$spxy

## Display points 
plot(sf::st_geometry(spxy3), pch = 16, cex = .5, col="grey")
plot

## Now only include P2 plots only (intensity1 = TRUE)
xydat3b <- DBgetXY(states = "Vermont", 
                   datsource = "datamart",
                   eval = "custom",
                   eval_opts = eval_options(invyrs = 2017:2019),
                   intensity1 = TRUE,
                   issp = TRUE)

spxy3b <- xydat3b$spxy

## Display points 
plot(sf::st_geometry(spxy3b), pch = 16, cex = .5)
plot

DBgetPlots()

The DBgetPlots function extracts plot-level data from FIA’s online DataMart or SQLite database.

Example 1: Get data for Rhode Island, most current FIA Evaluation, all plots.

View Example

DBgetPlots()

dat1 <- DBgetPlots(states = "Rhode Island", 
                   datsource = "datamart",
                   eval = "FIA", 
                   eval_opts = eval_options(Cur = TRUE, 
                                            Type = "ALL"),
                   issp = TRUE)
output
## ================================================================================
names(dat1)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "xyCur_PUBLIC"          
##  [7] "pop_plot_stratum_assgn" "evalid"                 "pltcnt"                
## [10] "invyrs"                 "evalInfo"               "ref_species"           
## [13] "args"
plt1 <- dat1$tabs$plt
spxy1 <- dat1$xyCur_PUBLIC
table(plt1$INVYR)
output
## 
## 2016 2017 2018 2019 2020 2021 2022 
##   38   40   38   36   37   41   38
# Display spatial output
plot(sf::st_geometry(spxy1), pch = 16, cex = .5)
plot

# Add a filter to include only plots with Northern red oak forest type (FORTYPCD == 505)
# Note: *allFilter* filters for plots and/or conditions for all states specified.

dat1b <- DBgetPlots(states = "Rhode Island", 
                    datsource = "datamart",
                    eval = "FIA",
                    eval_opts = eval_options(Cur = TRUE, 
                                             Type = "ALL"),
                    issp = TRUE, 
                    allFilter = "FORTYPCD == 505")
output
## ================================================================================
names(dat1b)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "xyCur_PUBLIC"          
##  [7] "pop_plot_stratum_assgn" "evalid"                 "pltcnt"                
## [10] "invyrs"                 "evalInfo"               "ref_species"           
## [13] "args"
spxy1b <- dat1b$xyCur_PUBLIC
dim(spxy1b)
output
## [1] 15 14
# Display spatial output
plot(sf::st_geometry(spxy1b), pch = 16, cex = .5, col="darkgreen")
plot

Example 3: Get data for Delaware, most current FIA Evaluation, include plotgeom data and subplot tables

View Example
dat2 <- DBgetPlots(states = "Delaware", 
                   datsource = "datamart",
                   eval = "FIA",
                   eval_opts = eval_options(Cur = TRUE, 
                                            Type = "ALL"),
                   issubp = TRUE,
                   addplotgeom = TRUE)
output
## ================================================================================
names(dat2)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "pop_plot_stratum_assgn"
##  [7] "evalid"                 "pltcnt"                 "invyrs"                
## [10] "evalInfo"               "ref_species"            "args"
tabs2 <- dat2$tabs
plt2 <- tabs2$plt

## subplot and subp_cond tables are added to tabs list
names(tabs2)
output
## [1] "tree"      "subplot"   "subp_cond" "plt"       "cond"
## PLOTGEOM data are appended to plt table (e.g., ALP_ADFORCD, FVS_VARIANT)
head(plt2)
output
##                CN     PREV_PLT_CN INVYR STATECD CYCLE SUBCYCLE UNITCD COUNTYCD
## 1 304032774489998 168931271010661  2016      10     7        3      1        5
## 2 304032775489998 168931275010661  2016      10     7        3      1        5
## 3 304032776489998 168931267010661  2016      10     7        3      1        5
## 4 304032777489998 168931259010661  2016      10     7        3      1        5
## 5 304032778489998 168931263010661  2016      10     7        3      1        3
## 6 304032779489998 168931247010661  2016      10     7        3      1        3
##   PLOT PLOT_STATUS_CD PLOT_NONSAMPLE_REASN_CD SAMP_METHOD_CD SUBP_EXAMINE_CD
## 1  595              3                       2              1               4
## 2  334              1                      NA              1               4
## 3  617              2                      NA              2               4
## 4  410              3                       2              1               4
## 5  598              2                      NA              2               4
## 6   19              2                      NA              2               4
##   MANUAL MACRO_BREAKPOINT_DIA INTENSITY MEASYEAR MEASMON MEASDAY REMPER KINDCD
## 1      7                   NA         1     2017       2       3     NA      1
## 2      7                   NA         1     2016      11       1    6.6      2
## 3      7                   NA         1     2016       6       1    6.0      2
## 4      7                   NA         1     2017       3       1    6.8      2
## 5      7                   NA         1     2016       6       1    6.0      2
## 6      7                   NA         1     2016       6       1    6.0      2
##   DESIGNCD RDDISTCD WATERCD LON_PUBLIC LAT_PUBLIC ELEV_PUBLIC GROW_TYP_CD
## 1        1       NA      NA  -75.42634   38.76185          40          NA
## 2        1        2       0  -75.66730   38.60185          20           2
## 3        1       NA      NA  -75.19065   38.59463          10           2
## 4        1       NA      NA  -75.30461   38.63188          20           2
## 5        1       NA      NA  -75.76654   39.62781          90           2
## 6        1       NA      NA  -75.52052   39.75933          50           2
##   MORT_TYP_CD P2PANEL P3PANEL SUBPANEL DECLINATION NF_PLOT_STATUS_CD
## 1          NA       2      NA        0          NA                NA
## 2           2       2      NA        0          NA                NA
## 3           2       2      NA        0          NA                NA
## 4           2       2      NA        0          NA                NA
## 5           2       2      NA        0          NA                NA
## 6           2       2      NA        0          NA                NA
##   NF_PLOT_NONSAMPLE_REASN_CD NF_SAMPLING_STATUS_CD P2VEG_SAMPLING_STATUS_CD
## 1                         NA                     0                        0
## 2                         NA                     0                        0
## 3                         NA                    NA                        0
## 4                         NA                     0                        0
## 5                         NA                    NA                        0
## 6                         NA                    NA                        0
##   P2VEG_SAMPLING_LEVEL_DETAIL_CD INVASIVE_SAMPLING_STATUS_CD
## 1                             NA                           0
## 2                             NA                           0
## 3                             NA                           0
## 4                             NA                           0
## 5                             NA                           0
## 6                             NA                           0
##   INVASIVE_SPECIMEN_RULE_CD DESIGNCD_P2A QA_STATUS       MODIFIED_DATE CONGCD
## 1                        NA           NA         1 2024-10-21 11:07:27   1000
## 2                        NA           NA         1 2024-10-21 11:07:27   1000
## 3                        NA           NA         1 2024-10-21 11:07:27   1000
## 4                        NA           NA         1 2024-10-21 11:07:27   1000
## 5                        NA           NA         1 2024-10-21 11:05:53   1000
## 6                        NA           NA         1 2024-10-21 11:05:53   1000
##   ECOSUBCD     HUC EMAP_HEX ALP_ADFORCD FVS_VARIANT FVS_LOC_CD FVS_REGION
## 1    232Hd 2080109     1720          NA          NE        921          9
## 2    232Hd 2080109     1721          NA          NE        921          9
## 3    232Hc 2040303     1608          NA          NE        921          9
## 4    232Hc 2040303     1608          NA          NE        921          9
## 5    232Hd 2040205     2061          NA          NE        921          9
## 6    232Ad 2040205     1945          NA          NE        921          9
##   FVS_FOREST FVS_DISTRICT ROADLESSCD NBRCND NBRCNDSAMP NBRCNDFOR NBRCNDFTYP
## 1         21           NA         NA      1          0         0          0
## 2         21           NA         NA      2          2         1          1
## 3         21           NA         NA      1          1         0          0
## 4         21           NA         NA      1          0         0          0
## 5         21           NA         NA      1          1         0          0
## 6         21           NA         NA      1          1         0          0
##   CCLIVEPLT               FORNONSAMP         PLOT_ID
## 1      90.0 Nonsampled-Denied access PID100100500595
## 2      57.8           Sampled-Forest PID100100500334
## 3       3.0        Sampled-Nonforest PID100100500617
## 4      95.0 Nonsampled-Denied access PID100100500410
## 5      11.0        Sampled-Nonforest PID100100300598
## 6       7.0        Sampled-Nonforest PID100100300019

Example 3: Get data for Delaware, most current FIA Evaluation, include pop tables

View Example
dat3 <- DBgetPlots(states = "Delaware", 
                   datsource = "datamart",
                   eval = "FIA",
                   eval_opts = eval_options(Cur = TRUE, 
                                            Type = "ALL"),
                   savePOP = TRUE,
                   othertables = c("POP_STRATUM", "POP_ESTN_UNIT"))
output
## ================================================================================
## savePOP = TRUE, saves the POP_PLOT_STRATUM_ASSGN table used to select plots 
names(dat3)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "pop_plot_stratum_assgn"
##  [7] "pop_stratum"            "pop_estn_unit"          "evalid"                
## [10] "pltcnt"                 "invyrs"                 "evalInfo"              
## [13] "ref_species"            "args"
## pop_stratum and pop_estn_unit tables are added to tabs list
tabs3 <- dat3$tabs
names(tabs3)
output
## [1] "tree"          "pop_stratum"   "pop_estn_unit" "plt"          
## [5] "cond"

Example 4: Export plot-level data to a CSV file

View Example
DBgetPlots(states = "Rhode Island", 
           datsource = "datamart",
           eval = "FIA",
           eval_opts = eval_options(Cur = TRUE, 
                                    Type = "ALL"),
           returndata = FALSE,
           savedata = TRUE,
           savedata_opts = savedata_options(outfolder = outfolder, 
                                            out_fmt = "csv",
                                            overwrite_layer = TRUE))
output
## ================================================================================
output
## $dbqueries
## $dbqueries$`Rhode Island`
## $dbqueries$`Rhode Island`$pltcond
## [1] "select  p.CN, p.PREV_PLT_CN, p.INVYR, p.STATECD, p.CYCLE, p.SUBCYCLE, p.UNITCD, p.COUNTYCD, p.PLOT, p.PLOT_STATUS_CD, p.PLOT_NONSAMPLE_REASN_CD, p.SAMP_METHOD_CD, p.SUBP_EXAMINE_CD, p.MANUAL, p.MACRO_BREAKPOINT_DIA, p.INTENSITY, p.MEASYEAR, p.MEASMON, p.MEASDAY, p.REMPER, p.KINDCD, p.DESIGNCD, p.RDDISTCD, p.WATERCD, p.LON, p.LAT, p.ELEV, p.GROW_TYP_CD, p.MORT_TYP_CD, p.P2PANEL, p.P3PANEL, p.SUBPANEL, p.DECLINATION, p.NF_PLOT_STATUS_CD, p.NF_PLOT_NONSAMPLE_REASN_CD, p.NF_SAMPLING_STATUS_CD, p.P2VEG_SAMPLING_STATUS_CD, p.P2VEG_SAMPLING_LEVEL_DETAIL_CD, p.INVASIVE_SAMPLING_STATUS_CD, p.INVASIVE_SPECIMEN_RULE_CD, p.DESIGNCD_P2A, p.QA_STATUS, p.MODIFIED_DATE, c.PLT_CN, c.CONDID, c.COND_STATUS_CD, c.COND_NONSAMPLE_REASN_CD, c.RESERVCD, c.OWNCD, c.OWNGRPCD, c.ADFORCD, c.FORTYPCD, c.FLDTYPCD, c.MAPDEN, c.STDAGE, c.STDSZCD, c.FLDSZCD, c.SITECLCD, c.SICOND, c.SIBASE, c.SISP, c.STDORGCD, c.STDORGSP, c.PROP_BASIS, c.CONDPROP_UNADJ, c.MICRPROP_UNADJ, c.SUBPPROP_UNADJ, c.MACRPROP_UNADJ, c.SLOPE, c.ASPECT, c.PHYSCLCD, c.GSSTKCD, c.ALSTKCD, c.DSTRBCD1, c.DSTRBYR1, c.DSTRBCD2, c.DSTRBYR2, c.DSTRBCD3, c.DSTRBYR3, c.TRTCD1, c.TRTYR1, c.TRTCD2, c.TRTYR2, c.TRTCD3, c.TRTYR3, c.PRESNFCD, c.BALIVE, c.FLDAGE, c.FORTYPCDCALC, c.HABTYPCD1, c.HABTYPCD2, c.LIVE_CANOPY_CVR_PCT, c.LIVE_MISSING_CANOPY_CVR_PCT, c.CANOPY_CVR_SAMPLE_METHOD_CD, c.CARBON_DOWN_DEAD, c.CARBON_LITTER, c.CARBON_SOIL_ORG, c.CARBON_UNDERSTORY_AG, c.CARBON_UNDERSTORY_BG, c.NF_COND_STATUS_CD, c.NF_COND_NONSAMPLE_REASN_CD, c.LAND_COVER_CLASS_CD \nfrom POP_PLOT_STRATUM_ASSGN ppsa\nJOIN PLOT p ON (p.CN = ppsa.PLT_CN) \nJOIN COND c ON (c.PLT_CN = p.CN) \nwhere ppsa.EVALID IN(442200)"
## 
## $dbqueries$`Rhode Island`$tree
## [1] "SELECT DISTINCT t.CN, t.PLT_CN, t.PREV_TRE_CN, t.SUBP, t.TREE, t.CONDID, t.STATUSCD, t.SPCD, t.SPGRPCD, t.DIA, t.HT, t.ACTUALHT, t.HTCD, t.TREECLCD, t.CR, t.CCLCD, t.AGENTCD, t.CULL, t.DECAYCD, t.STOCKING, t.WDLDSTEM, t.MORTYR, t.UNCRCD, t.BHAGE, t.TOTAGE, t.MORTCD, t.MIST_CL_CD, t.STANDING_DEAD_CD, t.PREV_STATUS_CD, t.PREV_WDLDSTEM, t.RECONCILECD, t.PREVDIA, t.VOLCFGRS, t.VOLCFGRS_BARK, t.VOLCFGRS_STUMP, t.VOLCFGRS_STUMP_BARK, t.VOLCFGRS_TOP, t.VOLCFGRS_TOP_BARK, t.VOLCFNET, t.VOLCFNET_BARK, t.VOLCFSND, t.VOLCFSND_BARK, t.VOLCFSND_STUMP, t.VOLCFSND_STUMP_BARK, t.VOLCFSND_TOP, t.VOLCFSND_TOP_BARK, t.VOLCSGRS, t.VOLCSGRS_BARK, t.VOLCSNET, t.VOLCSNET_BARK, t.VOLCSSND, t.VOLCSSND_BARK, t.VOLTSGRS, t.VOLTSGRS_BARK, t.VOLTSSND, t.VOLTSSND_BARK, t.VOLBFGRS, t.VOLBFNET, t.VOLBSGRS, t.VOLBSNET, t.TPA_UNADJ, t.DRYBIO_AG, t.DRYBIO_BG, t.DRYBIO_BOLE, t.DRYBIO_BOLE_BARK, t.DRYBIO_BRANCH, t.DRYBIO_FOLIAGE, t.DRYBIO_SAWLOG, t.DRYBIO_SAWLOG_BARK, t.DRYBIO_STEM, t.DRYBIO_STEM_BARK, t.DRYBIO_STUMP, t.DRYBIO_STUMP_BARK, t.CARBON_BG, t.CARBON_AG\nFROM POP_PLOT_STRATUM_ASSGN ppsa\nJOIN PLOT p ON (p.CN = ppsa.PLT_CN)\nJOIN TREE t ON (t.PLT_CN = p.CN)\nWHERE ppsa.EVALID IN(442200)"
## 
## 
## 
## $pltcnt
##     STABBR STATECD INVYR       PLOT_STATUS NBRPLTS
## 1       RI      44  2016        Nonsampled       4
## 2       RI      44  2016    Sampled-Forest      18
## 3       RI      44  2016 Sampled-Nonforest      16
## 4                                 Subtotal      38
## 41      RI      44  2017        Nonsampled       9
## 5       RI      44  2017    Sampled-Forest      18
## 6       RI      44  2017 Sampled-Nonforest      13
## 8                                 Subtotal      40
## 7       RI      44  2018        Nonsampled       3
## 81      RI      44  2018    Sampled-Forest      21
## 9       RI      44  2018 Sampled-Nonforest      14
## 12                                Subtotal      38
## 10      RI      44  2019        Nonsampled       4
## 11      RI      44  2019    Sampled-Forest      17
## 121     RI      44  2019 Sampled-Nonforest      15
## 16                                Subtotal      36
## 13      RI      44  2020        Nonsampled       4
## 14      RI      44  2020    Sampled-Forest      21
## 15      RI      44  2020 Sampled-Nonforest      12
## 20                                Subtotal      37
## 161     RI      44  2021        Nonsampled       9
## 17      RI      44  2021    Sampled-Forest      12
## 18      RI      44  2021 Sampled-Nonforest      20
## 24                                Subtotal      41
## 19      RI      44  2022        Nonsampled       2
## 201     RI      44  2022    Sampled-Forest      22
## 21      RI      44  2022 Sampled-Nonforest      14
## 28                                Subtotal      38
## 29                                   Total     268
## Read in data from outfolder
plt <- read.csv(file.path(outfolder, "plot.csv"), stringsAsFactors=FALSE)
head(plt)
output
##           CN  PREV_PLT_CN INVYR STATECD CYCLE SUBCYCLE UNITCD COUNTYCD PLOT
## 1 3.0523e+14 1.689988e+14  2016      44     7        4      1        7  343
## 2 3.0523e+14 2.213545e+14  2016      44     7        4      1        9   68
## 3 3.0523e+14 1.689988e+14  2016      44     7        4      1        7  119
## 4 3.0523e+14 1.689987e+14  2016      44     7        4      1        7   62
## 5 3.0523e+14 1.689988e+14  2016      44     7        4      1        9  342
## 6 3.0523e+14 1.689988e+14  2016      44     7        4      1        5  319
##   PLOT_STATUS_CD PLOT_NONSAMPLE_REASN_CD SAMP_METHOD_CD SUBP_EXAMINE_CD MANUAL
## 1              2                      NA              2               4      7
## 2              3                       2              1               4      7
## 3              1                      NA              1               4      7
## 4              1                      NA              1               4      7
## 5              1                      NA              1               4      7
## 6              2                      NA              2               4      7
##   MACRO_BREAKPOINT_DIA INTENSITY MEASYEAR MEASMON MEASDAY REMPER KINDCD
## 1                   NA         1     2016       6       1    6.0      2
## 2                   NA         1     2016       5      13     NA      1
## 3                   NA         1     2016       6      22    5.4      2
## 4                   NA         1     2016       7      20    5.9      2
## 5                   NA         1     2016       6      14    5.8      2
## 6                   NA         1     2016       6       1    6.0      2
##   DESIGNCD RDDISTCD WATERCD LON_PUBLIC LAT_PUBLIC ELEV_PUBLIC GROW_TYP_CD
## 1        1       NA      NA  -71.34652   41.77542          30           2
## 2        1       NA      NA  -71.51607   41.49760         250          NA
## 3        1        2       0  -71.38642   41.97530         140           2
## 4        1        1       0  -71.49510   41.84011         190           2
## 5        1        5       2  -71.46445   41.60411          80           2
## 6        1       NA      NA  -71.36327   41.53429           0           2
##   MORT_TYP_CD P2PANEL P3PANEL SUBPANEL DECLINATION NF_PLOT_STATUS_CD
## 1           2       2      NA        0          NA                NA
## 2          NA       3       3        0          NA                NA
## 3           2       2      NA        0          NA                NA
## 4           2       2      NA        0          NA                NA
## 5           2       2      NA        0          NA                NA
## 6           2       2      NA        0          NA                NA
##   NF_PLOT_NONSAMPLE_REASN_CD NF_SAMPLING_STATUS_CD P2VEG_SAMPLING_STATUS_CD
## 1                         NA                    NA                        0
## 2                         NA                     0                        1
## 3                         NA                     0                        0
## 4                         NA                     0                        0
## 5                         NA                     0                        0
## 6                         NA                    NA                        0
##   P2VEG_SAMPLING_LEVEL_DETAIL_CD INVASIVE_SAMPLING_STATUS_CD
## 1                             NA                           0
## 2                              1                           1
## 3                             NA                           0
## 4                             NA                           0
## 5                             NA                           0
## 6                             NA                           0
##   INVASIVE_SPECIMEN_RULE_CD DESIGNCD_P2A QA_STATUS       MODIFIED_DATE NBRCND
## 1                        NA           NA         1 2024-05-23 08:40:14      1
## 2                         1           NA         1 2024-05-23 08:40:53      1
## 3                        NA           NA         1 2024-05-23 08:40:14      2
## 4                        NA           NA         1 2024-05-23 08:40:14      2
## 5                        NA           NA         1 2024-05-23 08:40:53      1
## 6                        NA           NA         1 2024-05-23 08:39:34      1
##   NBRCNDSAMP NBRCNDFOR NBRCNDFTYP CCLIVEPLT               FORNONSAMP
## 1          1         0          0     27.00        Sampled-Nonforest
## 2          0         0          0     85.00 Nonsampled-Denied access
## 3          2         1          1     51.33           Sampled-Forest
## 4          2         1          1     21.25           Sampled-Forest
## 5          1         1          1     96.00           Sampled-Forest
## 6          1         0          0      0.00        Sampled-Nonforest
##           PLOT_ID
## 1 PID440100700343
## 2 PID440100900068
## 3 PID440100700119
## 4 PID440100700062
## 5 PID440100900342
## 6 PID440100500319

Example 5: Most current evaluation for multiple evalTypes (‘ALL’, ‘VOL’, ‘GRM’)

View Example
dat5 <- DBgetPlots(states = "Rhode Island", 
                   datsource = "datamart",
                   eval = "FIA",
                   eval_opts = eval_options(Cur = TRUE, 
                                            Type = c("VOL", "CHNG", "P2VEG")))
output
## ================================================================================
output
## 
##  ## STATUS: GETTING PLOT/COND CHANGE DATA ( RI ) ...
names(dat5)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "pop_plot_stratum_assgn"
##  [7] "evalid"                 "pltcnt"                 "invyrs"                
## [10] "evalInfo"               "ref_species"            "args"
tabs5 <- dat5$tabs
names(tabs5)
output
## [1] "pltu"                 "condu"                "subp_cond_chng_mtrx" 
## [4] "tree"                 "p2veg_subp_structure" "subplot"             
## [7] "subp_cond"            "plt"                  "cond"
ppsa5 <- dat5$pop_plot_stratum_assgn
table(ppsa5$EVALID)
output
## 
## 442201 442203 442210 
##    234    207     15

Example 6: Get data for a set of evalids

View Example
dat6 <- DBgetPlots(eval = "FIA",
                   eval_opts = eval_options(Cur = TRUE, 
                                            evalid = c(101800, 101801, 101803)))
output
## ================================================================================
names(dat6)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "pop_plot_stratum_assgn"
##  [7] "evalid"                 "pltcnt"                 "invyrs"                
## [10] "evalInfo"               "ref_species"            "args"
tabs6 <- dat6$tabs
names(tabs6)
output
## [1] "tree" "plt"  "cond"
ppsa6 <- dat6$pop_plot_stratum_assgn
table(ppsa6$EVALID)
output
## 
## 101800 101801 101803 
##    436    397    374

Example 7: Get data by Endyr

View Example
dat7 <- DBgetPlots(states = c("Connecticut"), 
                   eval = "FIA",
                   eval_opts = eval_options(evalType = "ALL",
                                            Endyr = 2017))
output
## ================================================================================
names(dat7)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "pop_plot_stratum_assgn"
##  [7] "evalid"                 "pltcnt"                 "invyrs"                
## [10] "evalInfo"               "ref_species"            "args"
tabs7 <- dat7$tabs
names(tabs7)
output
## [1] "tree" "plt"  "cond"
ppsa7 <- dat7$pop_plot_stratum_assgn
table(ppsa7$EVALID)
output
## 
## 91700 
##   537

Example 8: Get data for multiple inventory years

View Example
dat8 <- DBgetPlots(states = "Vermont", 
                   eval = "custom",
                   eval_opts = eval_options(invyrs = 2012:2014, 
                                            evalType = "ALL"))
output
## ================================================================================
names(dat8)
output
## [1] "states"    "tabs"      "tabIDs"    "dbqueries" "puniqueid" "pltcnt"   
## [7] "invyrs"    "evalInfo"  "args"
tabs8 <- dat8$tabs
names(tabs8)
output
## [1] "tree" "plt"  "cond"
plt8 <- tabs8$plt

table(plt8$INVYR)
output
## 
## 2012 2013 2014 
##  240  239  167

Example 9: Get data for periodic inventory

View Example
dat9 <- DBgetPlots(states = "Wyoming", 
                    invtype = "PERIODIC",
                    eval = "FIA",
                    eval_opts = list(Cur = TRUE, 
                                     evalType = "VOL"))
output
## ================================================================================
names(dat9)
output
##  [1] "states"                 "tabs"                   "tabIDs"                
##  [4] "dbqueries"              "puniqueid"              "pop_plot_stratum_assgn"
##  [7] "evalid"                 "pltcnt"                 "invyrs"                
## [10] "evalInfo"               "ref_species"            "args"
tabs9 <- dat9$tabs
names(tabs9)
output
## [1] "tree" "plt"  "cond"
plt9 <- tabs9$plt

table(plt9$STATECD, plt9$INVYR)
output
##     
##      2000
##   56 9956

Example 10: Intensity

View Example

The objective of this section is to understand the differences when using INTENSITY=1.

## With only P2 plots (intensity1 = TRUE)
dat10 <- DBgetPlots(states = "Vermont", 
                    eval = "FIA",
                    eval_opts = list(Cur = TRUE, 
                                     Type = "ALL"),
                    intensity1 = TRUE,
                    issp = TRUE)
output
## ================================================================================
tabs10 <- dat10$tabs
plt10 <- tabs10$plt

table(plt10$INVYR)
output
## 
## 2016 2017 2018 2019 2020 2021 2022 
##  147  150  140  155  148  146  151
spxy10 <- dat10$xyCur_PUBLIC


# Display spatial output of public coordinates
plot(sf::st_geometry(spxy10), pch = 16, cex = .5)
plot

DBgetStrata()

The DBgetStrata function queries the FIA database for post-stratification information.

Example1: Get strata for the most current evaluation for Wyoming

View Example

DBgetStrata()

strat1 <- DBgetStrata(states = "Wyoming", 
                      eval_opts = eval_options(Cur = TRUE))

names(strat1)
output
##  [1] "unitarea"   "unitvar"    "unitvar2"   "areavar"    "stratalut" 
##  [6] "strvar"     "getwt"      "getwtvar"   "evalid"     "pltassgn"  
## [11] "pltassgnid"
## Look at plot assign data
pltassgn1 <- strat1$pltassgn
head(pltassgn1)
output
##            PLT_CN UNITCD STATECD INVYR ESTN_UNIT COUNTYCD STRATUMCD EVALID
## 1 276307975489998      3      56  2014         5        5         5 562101
## 2 282479222489998      1      56  2013        29       29        12 562101
## 3 339004000489998      3      56  2015        11       11         1 562101
## 4 339004001489998      3      56  2015        45       45         5 562101
## 5 339004002489998      3      56  2016        11       11         2 562101
## 6 339004003489998      3      56  2016        11       11         1 562101
unique(pltassgn1$EVALID)
output
## [1] 562101
strat1$evalid  
output
## $Wyoming
## [1] 562101
## Look at area data for estimation unit
strat1$unitarea
output
##    STATECD ESTN_UNIT ESTN_UNIT_DESCR   ACRES EVALID
## 1       56         1      County 001 2757613 562101
## 2       56         3      County 003 2021729 562101
## 3       56         5      County 005 3072988 562101
## 4       56         7      County 007 5096959 562101
## 5       56         9      County 009 2729653 562101
## 6       56        11      County 011 1837124 562101
## 7       56        13      County 013 5930088 562101
## 8       56        15      County 015 1428579 562101
## 9       56        17      County 017 1283969 562101
## 10      56        19      County 019 2671802 562101
## 11      56        21      County 021 1720074 562101
## 12      56        23      County 023 2616954 562101
## 13      56        25      County 025 3440445 562101
## 14      56        27      County 027 1681849 562101
## 15      56        29      County 029 4459826 562101
## 16      56        31      County 031 1350969 562101
## 17      56        33      County 033 1617318 562101
## 18      56        35      County 035 3158807 562101
## 19      56        37      County 037 6714319 562101
## 20      56        39      County 039 2701941 562101
## 21      56        41      County 041 1336034 562101
## 22      56        43      County 043 1435352 562101
## 23      56        45      County 045 1536038 562101
strat1$unitvar
output
## [1] "ESTN_UNIT"
strat1$unitvar2
output
## [1] "STATECD"
strat1$areavar
output
## [1] "ACRES"
## Look at stratification data for estimation unit
strat1$stratalut
output
##    STATECD ESTN_UNIT STRATUMCD                 STRATUM_DESCR P2POINTCNT
## 1       56         1         1    High tree cover/Nonprivate         34
## 2       56         1         3     Low tree cover/Nonprivate         22
## 3       56         1        24            Tree cover/Private         14
## 4       56         1        58   Nontree/Nonprivate/Nonvisit        101
## 5       56         1        59      Nontree/Nonprivate/Visit         21
## 6       56         1        68      Nontree/Private/Nonvisit        241
## 7       56         1        69         Nontree/Private/Visit         12
## 8       56         3         5            Nontree/Nonprivate        239
## 9       56         3         6               Nontree/Private         65
## 10      56         3      1234                    Tree cover         36
## 11      56         5         5            Nontree/Nonprivate         80
## 12      56         5        68      Nontree/Private/Nonvisit        373
## 13      56         5        69         Nontree/Private/Visit         17
## 14      56         5      1234                    Tree cover         23
## 15      56         7         1    High tree cover/Nonprivate         88
## 16      56         7         3     Low tree cover/Nonprivate         34
## 17      56         7         5            Nontree/Nonprivate        391
## 18      56         7      2468              Private/Nonvisit        308
## 19      56         7      2469                 Private/Visit         17
## 20      56         9        12               High tree cover         11
## 21      56         9        34                Low tree cover         21
## 22      56         9        58   Nontree/Nonprivate/Nonvisit         75
## 23      56         9        59      Nontree/Nonprivate/Visit         12
## 24      56         9        68      Nontree/Private/Nonvisit        307
## 25      56         9        69         Nontree/Private/Visit         13
## 26      56        11         1    High tree cover/Nonprivate         27
## 27      56        11         2       High tree cover/Private         25
## 28      56        11         5            Nontree/Nonprivate         28
## 29      56        11        34                Low tree cover         14
## 30      56        11        68      Nontree/Private/Nonvisit        154
## 31      56        11        69         Nontree/Private/Visit         35
## 32      56        13         1    High tree cover/Nonprivate         48
## 33      56        13         2       High tree cover/Private         11
## 34      56        13         3     Low tree cover/Nonprivate         40
## 35      56        13         4        Low tree cover/Private         23
## 36      56        13         5            Nontree/Nonprivate        488
## 37      56        13         6               Nontree/Private        388
## 38      56        15         5            Nontree/Nonprivate         12
## 39      56        15       246                       Private        223
## 40      56        17        58   Nontree/Nonprivate/Nonvisit         80
## 41      56        17        59      Nontree/Nonprivate/Visit         12
## 42      56        17        68      Nontree/Private/Nonvisit         78
## 43      56        17        69         Nontree/Private/Visit         16
## 44      56        17      1234                    Tree cover         19
## 45      56        19         1    High tree cover/Nonprivate         43
## 46      56        19         3     Low tree cover/Nonprivate         11
## 47      56        19         5            Nontree/Nonprivate        133
## 48      56        19      2468              Private/Nonvisit        234
## 49      56        19      2469                 Private/Visit         15
## 50      56        21         5            Nontree/Nonprivate         26
## 51      56        21       246                       Private        257
## 52      56        23         3     Low tree cover/Nonprivate         44
## 53      56        23         5            Nontree/Nonprivate        213
## 54      56        23        12               High tree cover         73
## 55      56        23        46          Sparse cover/Private         91
## 56      56        25         6               Nontree/Private        241
## 57      56        25        58   Nontree/Nonprivate/Nonvisit        278
## 58      56        25        59      Nontree/Nonprivate/Visit         15
## 59      56        25      1234                    Tree cover         24
## 60      56        27     77778  All strata combined/Nonvisit        270
## 61      56        27     77779     All strata combined/Visit         10
## 62      56        29        12               High tree cover        150
## 63      56        29        34                Low tree cover         59
## 64      56        29        58   Nontree/Nonprivate/Nonvisit        238
## 65      56        29        59      Nontree/Nonprivate/Visit        153
## 66      56        29        68      Nontree/Private/Nonvisit        107
## 67      56        29        69         Nontree/Private/Visit         11
## 68      56        31         6               Nontree/Private        154
## 69      56        31        24            Tree cover/Private         13
## 70      56        31       135                    Nonprivate         48
## 71      56        33         5            Nontree/Nonprivate         49
## 72      56        33        13         Tree cover/Nonprivate         51
## 73      56        33      2468              Private/Nonvisit        158
## 74      56        33      2469                 Private/Visit         13
## 75      56        35         5            Nontree/Nonprivate        338
## 76      56        35         6               Nontree/Private         86
## 77      56        35        12               High tree cover         59
## 78      56        35        34                Low tree cover         42
## 79      56        37         5            Nontree/Nonprivate        830
## 80      56        37        13         Tree cover/Nonprivate         24
## 81      56        37       468 Sparse cover/Private/Nonvisit        280
## 82      56        37       469    Sparse cover/Private/Visit         13
## 83      56        39        12               High tree cover        206
## 84      56        39        34                Low tree cover         53
## 85      56        39        56                       Nontree        191
## 86      56        41         5            Nontree/Nonprivate         81
## 87      56        41         6               Nontree/Private        106
## 88      56        41        13         Tree cover/Nonprivate         15
## 89      56        41        24            Tree cover/Private         14
## 90      56        43         5            Nontree/Nonprivate        154
## 91      56        43         6               Nontree/Private         43
## 92      56        43      1234                    Tree cover         18
## 93      56        45         5            Nontree/Nonprivate         77
## 94      56        45        68      Nontree/Private/Nonvisit        147
## 95      56        45        69         Nontree/Private/Visit         10
## 96      56        45      1234                    Tree cover         15
##    P1POINTCNT EVALID
## 1      188590 562101
## 2      146522 562101
## 3      151175 562101
## 4      505654 562101
## 5      115149 562101
## 6     1553813 562101
## 7       96710 562101
## 8     1443670 562101
## 9      341138 562101
## 10     236921 562101
## 11     503496 562101
## 12    2241815 562101
## 13     150256 562101
## 14     177421 562101
## 15     506170 562101
## 16     231874 562101
## 17    2378302 562101
## 18    1768200 562101
## 19     212414 562101
## 20      96531 562101
## 21     146977 562101
## 22     471919 562101
## 23      81799 562101
## 24    1808705 562101
## 25     123722 562101
## 26     152938 562101
## 27     175525 562101
## 28     214428 562101
## 29     113296 562101
## 30     913891 562101
## 31     267046 562101
## 32     318910 562101
## 33      82123 562101
## 34     231650 562101
## 35     135426 562101
## 36    3012392 562101
## 37    2149587 562101
## 38     119982 562101
## 39    1308597 562101
## 40     484299 562101
## 41      78699 562101
## 42     486406 562101
## 43     106012 562101
## 44     128554 562101
## 45     260186 562101
## 46      61413 562101
## 47     754577 562101
## 48    1436063 562101
## 49     159563 562101
## 50     193675 562101
## 51    1526399 562101
## 52     212274 562101
## 53    1397220 562101
## 54     442756 562101
## 55     564704 562101
## 56    1501487 562101
## 57    1652947 562101
## 58     101079 562101
## 59     184932 562101
## 60    1576733 562101
## 61     105116 562101
## 62     904426 562101
## 63     463514 562101
## 64    1400259 562101
## 65     982534 562101
## 66     621910 562101
## 67      87184 562101
## 68     967486 562101
## 69      63565 562101
## 70     319918 562101
## 71     283337 562101
## 72     288794 562101
## 73     938293 562101
## 74     106894 562101
## 75    1966626 562101
## 76     546626 562101
## 77     387966 562101
## 78     257589 562101
## 79    4791364 562101
## 80     137281 562101
## 81    1689151 562101
## 82      96523 562101
## 83    1206959 562101
## 84     321491 562101
## 85    1173491 562101
## 86     487514 562101
## 87     658296 562101
## 88      87804 562101
## 89     102420 562101
## 90     988708 562101
## 91     313616 562101
## 92     133028 562101
## 93     394484 562101
## 94     948094 562101
## 95      83845 562101
## 96     109615 562101
strat1$strvar
output
## [1] "STRATUMCD"
strat1$getwtvar
output
## [1] "P1POINTCNT"

Example 2: Get strata information for a specific evaluation for Wyoming

View Example
strat2 <- DBgetStrata(eval_opts = eval_options(evalid = 561200))

unique(strat2$pltassgn$EVALID)
output
## [1] 561200
strat2$evalid  
output
## $Wyoming
## [1] 561200

Example 3: Get strata information for Wyoming, evaluation ending in 2014

View Example
strat3 <- DBgetStrata(states = "Wyoming",
                      eval_opts = eval_options(Endyr = 2014))
                  
unique(strat3$pltassgn$EVALID)
output
## [1] 561401
strat3$evalid  
output
## $Wyoming
## [1] 561401