Skip to contents

Overview

The R package, FIESTA (Forest Inventory ESTimation and Analysis) is a research estimation tool for analysts that work with sample-based inventory data from the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program. FIESTA can generate FIA’s traditional state-wide estimates while also accommodate: unique population boundaries, different evaluation time periods, customized stratification schemes, non-standard variance equations, integration of multi-scale remotely-sensed data and other auxiliary information, and interaction with other modeling and estimation tools from CRAN’s library of packages. FIESTA contains a collection of functions that can query FIA databases, summarize and compile plot and spatial data, and generate estimates with associated sampling errors.

Functions are organized by type or objective and are named with a corresponding prefix (Fig. 1). FIESTA core functions (CORE) facilitate data extraction and compilation of data input information and are used independently or within the FIESTA estimation modules. FIESTA estimation modules (MODULE) combine multiple functions from FIESTA or other packages to generate population estimates using different estimation strategies. Each module has an associated mod*pop function for compiling the population data and calculations (e.g., adjustments for nonresponse, standardizing auxiliary data) for a custom boundary and can be used for generating multiple estimates. FIESTA analysis functions, found in the FIESTAnalysis package, streamline different estimation routines by wrapping (i.e., combining) estimation modules and other functions for a specific purpose.

Core Functions
  • Database tools (DB*) - functions for querying and extracting data from FIA’s national database.
  • Data tools (dat*) - functions for summarizing and exploring FIA data.
  • Spatial tools (sp*) - functions for manipulating and summarizing spatial data.
Estimation Modules (mod)
  • Green-Book (modGB*) - functions for FIA’s standard Green-Book estimators.
  • Photo-Based (modPB*) - functions for supplementary photo-based estimators.
  • Small Area (modSA*) - functions for integration with available small area estimators (SAE).
  • Model-Assisted (modMA*) - functions for integration with available Model-Assisted estimators.
Analysis Functions
  • Analysis functions (an*) - wrapper functions for steam-lining estimation processes. These functions reside in the FIESTAnalysis package.

Installation

Stable installation

You can install the current stable version of FIESTA from CRAN:

Developmental installation

Or, if you’d like to install the developmental version of FIESTA, you can do so through a few steps:

1. Install Rtools or xcode

If you are using the Windows OS, in order to install source code from GitHub, you must install Rtools from CRAN. Install the most current Rtools for Windows 64-bit at this link.

If you are using macOS, you’ll need to install xcode developer tools to install source code from GitHub. To do so, run the following code in your terminal (not the R console):

xcode-select --install
2. Install the developmental version of FIESTA (and FIESTAutils)

First note that the developmental version of FIESTA may rely on a developmental version of FIESTAutils. For both of these installations, you’ll need to make sure to have the remotes package, and then you can install both packages from GitHub:

# Install developmental FIESTAutils first
remotes::install_github("USDAForestService/FIESTAutils",
                        dependencies = TRUE)

# Then install developmental FIESTA
remotes::install_github("USDAForestService/FIESTA",
                        dependencies = TRUE)

Bug Reports

To report a bug with FIESTA, please open an issue on the FIESTA GitHub Repository issues page. Please provide a description of the bug, and a reproducible example. For help creating a reproducible example, see the reprex R package.

This code was written and prepared by U.S. Government employees on official time, and therefore it is in the public domain and not subject to copyright.

License is GPL-3.

Accessing Documentation

Vignettes

The vignette tutorials from FIESTA can be accessed from the package website. The vignettes are split up into a few groups: general manuals (Module Estimates and Population Data), core functions (Database Tools, Data Tools, and Spatial Tools), and estimation modules (Green-book Estimators, Model-Assisted Estimators, Small Area Estimators, and Photo-Based Module). We suggest you read the general manuals first if you are new to FIESTA.

External Data

You can access documentation for external data included in FIESTA in the extdata-README.md file.

Examples

These examples make use of vignettes that come with FIESTA, and these vignettes can be found by calling vignette(package = "FIESTA"). The data used in these examples come with the FIESTA package and are from Wyoming, inventory years 2011-2013 (Evaluation 561301). We first load FIESTA to run these examples:

Example 1: Green-book estimation

In order to produce estimates based on the Green-book, we first use the GBpopdat function to produce population data for our areas of interest. We can look at a summary of the population data below.

GBpopdat <- modGBpop(popTabs = list(cond = FIESTA::WYcond,  
                                    tree = FIESTA::WYtree),      
                     popTabIDs = list(cond = "PLT_CN"),
                     pltassgn = FIESTA::WYpltassgn,
                     pltassgnid = "CN",
                     pjoinid = "PLT_CN",
                     unitarea = FIESTA::WYunitarea,
                     unitvar = "ESTN_UNIT", 
                     strata = TRUE,
                     stratalut = FIESTA::WYstratalut,
                     strata_opts = strata_options(getwt = TRUE))

summary(GBpopdat)
#>               Length Class      Mode     
#> module         1     -none-     character
#> popType        1     -none-     character
#> pltidsadj      5     data.table list     
#> pltcondx      29     data.table list     
#> pltcondflds   28     -none-     character
#> pjoinid        1     -none-     character
#> cuniqueid      1     -none-     character
#> condid         1     -none-     character
#> ACI            1     -none-     logical  
#> areawt         1     -none-     character
#> areawt2        0     -none-     NULL     
#> adjcase        1     -none-     character
#> dbqueries      4     -none-     list     
#> dbqueriesWITH  4     -none-     list     
#> pltassgnx      4     data.table list     
#> pltassgnid     1     -none-     character
#> unitarea       2     data.table list     
#> areavar        1     -none-     character
#> areaunits      1     -none-     character
#> unitvar        1     -none-     character
#> unitvars       1     -none-     character
#> unitltmin      1     -none-     numeric  
#> strata         1     -none-     logical  
#> stratalut      6     data.table list     
#> strvar         1     -none-     character
#> strwtvar       1     -none-     character
#> plotsampcnt    0     data.frame list     
#> condsampcnt    3     data.frame list     
#> states         1     -none-     character
#> invyrs         0     -none-     NULL     
#> adj            1     -none-     character
#> P2POINTCNT     3     data.frame list     
#> plotunitcnt    2     data.frame list     
#> treex         19     data.table list     
#> tuniqueid      1     -none-     character
#> adjfactors     7     data.table list     
#> adjvarlst      4     -none-     character
#> popdatindb     1     -none-     logical

Note that the GBpopdat list generated by modGBpop contains many items. Some examples include the number of plots by plot status (plotsampcnt), the number of conditions by condition status (condsampcnt), the strata-level population data, including number of plots and adjustment factors (stratalut), and the adjustment factors added to the condition-level, tree-level, and seedling data (condx, treex, and seedx, respectfully).

Now, with the GBpopdat object, we can quickly produce estimates of basal area (estvar = "BA") by county in Wyoming for the 2011-2013 years.

GBest <- modGBtree(GBpopdat = GBpopdat,
                   estvar = "BA",
                   estvar.filter = "STATUSCD == 1",
                   sumunits = FALSE)

We again output a list, now with estimates/standard errors, raw data, state code, and inventory year:

str(GBest, max.level = 2)
#> List of 4
#>  $ est    :'data.frame': 23 obs. of  3 variables:
#>   ..$ ESTN_UNIT             : chr [1:23] "1" "11" "13" "15" ...
#>   ..$ Estimate              : num [1:23] 34637492 34861880 70412559 308998 4687031 ...
#>   ..$ Percent Sampling Error: num [1:23] 11.7 14.4 11.6 84.6 67.7 ...
#>  $ raw    :List of 12
#>   ..$ unit_totest  :'data.frame':    23 obs. of  18 variables:
#>   ..$ domdat       :'data.frame':    590 obs. of  4 variables:
#>   ..$ domdatqry    : chr "WITH\npltids AS\n(SELECT DISTINCT PLT_CN\n FROM condx), \n----- pltcondx\npltcondx AS\n(SELECT c.PLT_CN, c.COND"| __truncated__
#>   ..$ estvar       : chr "BA"
#>   ..$ estvar.filter: chr "STATUSCD == 1"
#>   ..$ module       : chr "GB"
#>   ..$ esttype      : chr "TREE"
#>   ..$ GBmethod     : chr "PS"
#>   ..$ rowvar       : chr "TOTAL"
#>   ..$ colvar       : chr "NONE"
#>   ..$ areaunits    : chr "acres"
#>   ..$ estunits     : chr "square feet"
#>  $ statecd: int 56
#>  $ states : chr "Wyoming"

Example 2: Model-assisted estimation

FIESTA makes it easy to do estimation through techniques such as model-assited estimation and small area estimation. In this example, we use a similar process to the Green-Book estimation above to produce estimates for the same region, but through a generalized regression (GREG) model-assisted estimator. First, we get our population data:

MApopdat <- modMApop(popTabs = list(tree = FIESTA::WYtree,
                                    cond = FIESTA::WYcond),
                     pltassgn = FIESTA::WYpltassgn,
                     pltassgnid = "CN",
                     unitarea = FIESTA::WYunitarea,
                     unitvar = "ESTN_UNIT",
                     unitzonal = FIESTA::WYunitzonal,
                     prednames = c("dem", "tcc", "tpi", "tnt"),
                     predfac = "tnt")

Now, analogous to the modGBtree() function we can produce estimates with the modMAtree() function

MAest <- modMAtree(MApopdat = MApopdat,
                   MAmethod = "greg",
                   estvar = "BA",
                   estvar.filter = "STATUSCD == 1")

and we can see the output of modMAtree():

str(MAest, max.level = 2)
#> List of 4
#>  $ est    :'data.frame': 23 obs. of  3 variables:
#>   ..$ ESTN_UNIT             : chr [1:23] "1" "11" "13" "15" ...
#>   ..$ Estimate              : num [1:23] 75809929 117896280 312165085 -14313592 42191880 ...
#>   ..$ Percent Sampling Error: num [1:23] 17 12.3 11 0 43.6 ...
#>  $ raw    :List of 13
#>   ..$ unit_totest  :'data.frame':    23 obs. of  18 variables:
#>   ..$ domdat       :'data.frame':    590 obs. of  5 variables:
#>   ..$ plotweights  :Classes 'data.table' and 'data.frame':   556 obs. of  5 variables:
#>   .. ..- attr(*, ".internal.selfref")=<externalptr> 
#>   ..$ estvar       : chr "BA"
#>   ..$ estvar.filter: chr "STATUSCD == 1"
#>   ..$ module       : chr "MA"
#>   ..$ esttype      : chr "TREE"
#>   ..$ MAmethod     : chr "greg"
#>   ..$ predselectlst:List of 1
#>   ..$ rowvar       : chr "TOTAL"
#>   ..$ colvar       : chr "NONE"
#>   ..$ areaunits    : chr "acres"
#>   ..$ estunits     : chr "square feet"
#>  $ statecd: int 56
#>  $ states : chr "Wyoming"