Generates tree estimates by estimation unit. Estimates are calculated from McConville et al. (2018)'s mase R package.
modMAtree(
MApopdat,
MAmethod,
estvar,
estvar.filter = NULL,
estseed = "none",
woodland = "Y",
landarea = "FOREST",
pcfilter = NULL,
rowvar = NULL,
colvar = NULL,
prednames = NULL,
modelselect = FALSE,
FIA = TRUE,
bootstrap = FALSE,
returntitle = FALSE,
savedata = FALSE,
table_opts = NULL,
title_opts = NULL,
savedata_opts = NULL,
gui = FALSE,
modelselect_bydomain = FALSE,
...
)
List. Population data objects returned from modMApop().
String. mase (i.e., model-assisted) method to use ('greg', 'gregEN', 'ratio').
String. Name of the tree-level estimate variable (e.g., 'VOLCFNET').
String. A tree-level filter for estvar. Must be R syntax (e.g., 'STATUSCD == 1').
String. Use seedling data only or add to tree data. Seedling estimates are only for counts (estvar='TPA_UNADJ')-('none', 'only', 'add').
String. If woodland = 'Y', include woodland tree species where measured. If woodland = 'N', only include timber species. See FIESTA::ref_species$WOODLAND ='Y/N'. If woodland = 'only', only include woodland species.
String. The condition-level filter for defining land area ('ALL', 'FOREST', 'TIMBERLAND'). If landarea='FOREST', COND_STATUS_CD = 1; if landarea='TIMBERLAND', SITECLCD in(1:6) & RESERVCD = 0.
String. A filter for plot or cond attributes (including pltassgn). Must be R logical syntax.
String. Optional. Name of domain variable to group estvar by for rows in table output. Rowvar must be included in an input data frame (i.e., plt, cond, tree). If no rowvar is included, an estimate is returned for the total estimation unit. Include colvar for grouping by 2 variables.
String. Optional. If rowvar != NULL, name of domain variable to group estvar by for columns in table output. Colvar must be included in an input data frame (i.e., plt, cond, tree).
String vector. Name(s) of predictor variables to include in model.
Logical. If TRUE, an elastic net regression model is fit to the entire plot level data, and the variables selected in that model are used for the proceeding estimation.
Logical. If TRUE, the finite population term is removed from estimator to match FIA estimates.
Logical. If TRUE, returns bootstrap variance estimates, otherwise uses Horvitz-Thompson estimator under simple random sampling without replacement.
Logical. If TRUE, returns title(s) of the estimation table(s).
Logical. If TRUE, saves table(s) to outfolder.
List. See help(table_options()) for a list of options.
List. See help(title_options()) for a list of options.
List. See help(savedata_options()) for a list of options. Only used when savedata = TRUE.
Logical. If gui, user is prompted for parameters.
Logical. If TRUE, modelselection will occur at the domain level as specified by rowvar and/or colvar and not at the level of the entire sample.
Parameters for modMApop() if MApopdat is NULL.
If FIA=TRUE or unitvar=NULL and colvar=NULL, one data frame is returned with tree estimates and percent sample errors. Otherwise, a list is returned with tree estimates in one data frame (est) and percent sample errors in another data frame (est.pse). If rawdata=TRUE, another list is returned including raw data used in the estimation process. If addtitle=TRUE and returntitle=TRUE, the title for est/pse is returned. If savedata=TRUE, all data frames are written to outfolder.
Data frame. Tree estimates by rowvar, colvar (and estimation unit). If FIA=TRUE or one estimation unit and colvar=NULL, estimates and percent sampling error are in one data frame.
Data frame. Percent sampling errors for estimates by rowvar and colvar (and estimation unit).
List with 1 or 2 string vectors. If returntitle=TRUE a list with table title(s). The list contains one title if est and pse are in the same table and two titles if est and pse are in separate tables.
List of data frames. If rawdata=TRUE, a list including: number of plots by plot status, if in dataset (plotsampcnt); number of conditions by condition status (condsampcnt); data used for post-stratification (stratdat); and 1-8 tables with calculated variables used for processing estimates and percent sampling error for table cell values and totals (See processing data below).
Raw data
Table. Number of plots by plot status (ex. sampled forest on plot, sampled nonforest, nonsampled).
DF. Number of conditions by condition status (forest land, nonforest land, noncensus water, census water, nonsampled).
Data frame. Strata information by estimation unit.
Variable | Description | |
ESTUNIT | estimation unit | |
STRATA | strata | |
ACRES | area by strata for estimation unit | |
n.strata | number of plots in strata (and estimation unit) | |
n.total | number of plots for estimation unit | |
TOTACRES | total area for estimation unit | |
strwt | proportion of area (or number of plots) by strata (strata weight) | |
expfac.strata | expansion factor (in area unit (e.g., acres) by strata (areavar/n.strata) |
Data frames. Separate data frames containing calculated variables used in estimation process. The number of processing tables depends on the input parameters. The tables include: total by estimation unit (unit.totest); rowvar totals (unit.rowest), and if colvar is not NULL, colvar totals, (unit.colvar); and a combination of rowvar and colvar (unit.grpvar). If FIA=TRUE, the raw data for the summed estimation units are also included (totest, rowest, colest, grpest, respectively). These tables do not included estimate proportions (nhat and nhat.var).
The data frames include the following information:
Variable | Description | |
nhat | estimated proportion of trees | |
nhat.var | estimated variance of estimated proportion of trees | |
ACRES | total area for estimation unit | |
est | estimated area of trees nhat*ACRES | |
est.var | estimated variance of estimated area of trees nhat.var*areavar^2 | |
est.se | standard error of estimated area of trees sqrt(est.var) | |
est.cv | coefficient of variation of estimated area of trees est.se/est | |
pse | percent sampling error of estimate est.cv*100 | |
CI99left | left tail of 99 percent confidence interval for estimated area | |
CI99right | right tail of 99 percent confidence interval for estimated area | |
CI95left | left tail of 95 percent confidence interval for estimated area | |
CI95right | right tail of 95 percent confidence interval for estimated area | |
CI67left | left tail of 67 percent confidence interval for estimated area | |
CI67right | right tail of 67 percent confidence interval for estimated area |
Table(s) are also written to outfolder.
If variables are NULL, then it will prompt user to input variables.
Necessary variables:
Data | Variable | Description | |
tree | tuniqueid | Unique identifier for each plot, to link to pltassgn (e.g. PLT_CN). | |
CONDID | Unique identifier of each condition on plot, to link to cond. Set CONDID=1, if only 1 condition per plot. | ||
TPA_UNADJ | Number of trees per acre each sample tree represents (e.g., DESIGNCD=1: TPA_UNADJ=6.018046 for trees on subplot; 74.965282 for trees on microplot). | ||
cond | cuniqueid | Unique identifier for each plot, to link to pltassgn (ex. PLT_CN). | |
CONDID | Unique identifier of each condition on plot. Set CONDID=1, if only 1 condition per plot. | ||
CONDPROP_UNADJ | Unadjusted proportion of condition on each plot. Set CONDPROP_UNADJ=1, if only 1 condition per plot. | ||
COND_STATUS_CD | Status of each forested condition on plot (i.e. accessible forest, nonforest, water, etc.) | ||
NF_COND_STATUS_CD | If ACI=TRUE. Status of each nonforest condition on plot (i.e. accessible nonforest, nonsampled nonforest) | ||
SITECLCD | If landarea=TIMBERLAND. Measure of site productivity. | ||
RESERVCD | If landarea=TIMBERLAND. Reserved status. | ||
SUBPROP_UNADJ | Unadjusted proportion of subplot conditions on each plot. Set SUBPROP_UNADJ=1, if only 1 condition per subplot. | ||
MICRPROP_UNADJ | If microplot tree attributes. Unadjusted proportion of microplot conditions on each plot. Set MICRPROP_UNADJ=1, if only 1 condition per microplot. | ||
MACRPROP_UNADJ | If macroplot tree attributes. Unadjusted proportion of macroplot conditions on each plot. Set MACRPROP_UNADJ=1, if only 1 condition per macroplot. | ||
pltassgn | puniqueid | Unique identifier for each plot, to link to cond (ex. CN). | |
STATECD | Identifies state each plot is located in. | ||
INVYR | Identifies inventory year of each plot. | ||
PLOT_STATUS_CD | Status of each plot (i.e. sampled, nonsampled). If not included, all plots are assumed as sampled. |
Reference names are available for the following variables:
ADFORCD,
AGENTCD, CCLCD, DECAYCD, DSTRBCD, KINDCD, OWNCD, OWNGRPCD, FORTYPCD,
FLDTYPCD, FORTYPCDCALC, TYPGRPCD, FORINDCD, RESERVCD, LANDCLCD, STDSZCD,
FLDSZCD, PHYSCLCD, MIST_CL_CD, PLOT_STATUS_CD, STATECD, TREECLCD, TRTCD,
SPCD, SPGRPCD
ADJUSTMENT FACTOR:
The adjustment factor is necessary to account for
nonsampled conditions. It is calculated for each estimation unit by strata.
by summing the unadjusted proportions of the subplot, microplot, and
macroplot (i.e. *PROP_UNADJ) and dividing by the number of plots in the
strata/estimation unit).
An adjustment factor is determined for each tree based on the size of the plot it was measured on. This is identified using TPA_UNADJ as follows:
PLOT SIZE | TPA_UNADJ | |
SUBPLOT | 6.018046 | |
MICROPLOT | 74.965282 | |
MACROPLOT | 0.999188 |
If ACI=FALSE, only nonsampled forest conditions are accounted for in the
adjustment factor.
If ACI=TRUE, the nonsampled nonforest conditions are
removed as well and accounted for in adjustment factor. This is if you are
interested in estimates for all lands or nonforest lands in the
All-Condition-Inventory.
sumunits:
An estimation unit is a population, or area of interest, with
known area and number of plots. Individual counties or combined
Super-counties are common estimation units for FIA. An estimation unit may
also be a subpopulation of a larger population (e.g., Counties within a
State). Subpopulations are mutually exclusive and independent within a
population, therefore estimated totals and variances are additive. For
example, State-level estimates are generated by summing estimates from all
subpopulations within the State (Bechtold and Patterson. 2005. Chapter 2).
Each plot must be assigned to only one estimation unit.
stratcombine:
If MAmethod='PS', and stratcombine=TRUE, and less than 2
plots in any one estimation unit, all estimation units with 10 or less plots
are combined. The current method for combining is to group the estimation
unit with less than 10 plots with the estimation unit following in
consecutive order (numeric or alphabetical), restrained by survey unit
(UNITCD) if included in dataset, and continuing until the number of plots
equals 10. If there are no estimation units following in order, it is
combined with the estimation unit previous in order.
autoxreduce:
If MAmethod='GREG', and autoxreduce=TRUE, and there is an
error because of multicolinearity, a variable reduction method is applied to
remove correlated variables. The method used is based on the
variance-inflation factor (vif) from a linear model. The vif estimates how
much the variance of each x variable is inflated due to mulitcolinearity in
the model.
rowlut/collut:
There are several objectives for including rowlut/collut
look-up tables: 1) to include descriptive names that match row/column codes
in the input table; 2) to use number codes that match row/column names in
the input table for ordering rows; 3) to add rows and/or columns with 0
values for consistency. No duplicate names are allowed.
Include 2 columns in the table:
1-the merging variable with same name as
the variable in the input merge table;
2-the ordering or descriptive
variable.
If the ordering variable is the rowvar/colvar in the input
table and the descriptive variable is in rowlut/collut, set
row.orderby/col.orderby equal to rowvar/colvar. If the descriptive variable
is the rowvar/colvar in the input table, and the ordering code variable is
in rowlut/collut, set row.orderby/col.orderby equal to the variable name of
the code variable in rowlut/collut.
UNITS:
The following variables are converted from pounds (from FIA
database) to short tons by multiplying the variable by 0.0005. DRYBIO_AG,
DRYBIO_BG, DRYBIO_WDLD_SPP, DRYBIO_SAPLING, DRYBIO_STUMP, DRYBIO_TOP,
DRYBIO_BOLE, DRYBIOT, DRYBIOM, DRYBIOTB, JBIOTOT, CARBON_BG, CARBON_AG
MORTALITY:
For Interior-West FIA, mortality estimates are mainly based on
whether a tree has died within the last 5 years of when the plot was
measured. If a plot was remeasured, mortality includes trees that were alive
the previous visit but were dead in the next visit. If a tree was standing
the previous visit, but was not standing in the next visit, no diameter was
collected (DIA = NA) but the tree is defined as mortality.
Common tree filters:
FILTER | DESCRIPTION | |
"STATUSCD == 1" | Live trees | |
"STATUSCD == 2" | Dead trees | |
"TPAMORT_UNADJ > 0" | Mortality trees | |
"STATUSCD == 2 & DIA >= 5.0" | Dead trees >= 5.0 inches diameter | |
"STATUSCD == 2 & AGENTCD == 30" | Dead trees from fire |
Kelly McConville, Becky Tang, George Zhu, Shirley Cheung, and Sida Li (2018). mase: Model-Assisted Survey Estimation. R package version 0.1.2 https://cran.r-project.org/package=mase
# \donttest{
# Set up population dataset (see ?modMApop() for more information)
MApopdat <- modMApop(popTabs = list(tree = FIESTA::WYtree,
cond = FIESTA::WYcond),
pltassgn = FIESTA::WYpltassgn,
pltassgnid = "CN",
unitarea = FIESTA::WYunitarea,
unitvar = "ESTN_UNIT",
unitzonal = FIESTA::WYunitzonal,
prednames = c("dem", "tcc", "tpi", "tnt"),
predfac = "tnt")
#> For FIA estimation, adjustment factors are calculated to account for plots with partial nonresponse.
#> ...there are 14 nonsampled forest conditions in the dataset.
#> COND_STATUS_CD != 5
#> filter removed 14 records: COND_STATUS_CD != 5
# Use GREG Estimator to Estimate cubic foot volume of live trees in our
# population
mod1 <- modMAtree(MApopdat = MApopdat,
MAmethod = "greg",
estvar = "VOLCFNET",
estvar.filter = "STATUSCD == 1")
#> COND_STATUS_CD == 1
#> filter removed 2620 records: COND_STATUS_CD == 1
#> COND_STATUS_CD == 1
#> multiplying VOLCFNET by TPA
#> STATUSCD == 1
#> generating estimates using mase::greg function...
#> using the following predictors...dem, tcc, tpi, tnt2
#> getting output...
str(mod1)
#> List of 4
#> $ est :Classes ‘data.table’ and 'data.frame': 23 obs. of 3 variables:
#> ..$ ESTN_UNIT : chr [1:23] "1" "11" "13" "15" ...
#> ..$ Estimate : num [1:23] 4.80e+08 8.42e+08 8.23e+08 0.00 1.10e+08 ...
#> ..$ Percent Sampling Error: num [1:23] 10.9 15.3 12.6 NaN 47.9 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> ..- attr(*, "sorted")= chr "ESTN_UNIT"
#> $ raw :List of 13
#> ..$ unit_totest :'data.frame': 23 obs. of 18 variables:
#> .. ..$ ESTN_UNIT : chr [1:23] "1" "11" "13" "15" ...
#> .. ..$ nhat : num [1:23] 173.9 458.4 138.8 0 85.4 ...
#> .. ..$ nhat.var : num [1:23] 360 4893 308 0 1675 ...
#> .. ..$ NBRPLT : int [1:23] 133 85 290 70 58 128 86 132 175 79 ...
#> .. ..$ NBRPLT.gt0: int [1:23] 23 26 46 0 5 21 2 37 5 2 ...
#> .. ..$ ACRES : num [1:23] 2757613 1837124 5930088 1428579 1283969 ...
#> .. ..$ AREAUSED : num [1:23] 2757613 1837124 5930088 1428579 1283969 ...
#> .. ..$ est : num [1:23] 4.80e+08 8.42e+08 8.23e+08 0.00 1.10e+08 ...
#> .. ..$ est.var : num [1:23] 2.74e+15 1.65e+16 1.08e+16 0.00 2.76e+15 ...
#> .. ..$ est.se : num [1:23] 5.23e+07 1.29e+08 1.04e+08 0.00 5.26e+07 ...
#> .. ..$ est.cv : num [1:23] 0.109 0.153 0.126 NaN 0.479 ...
#> .. ..$ pse : num [1:23] 10.9 15.3 12.6 NaN 47.9 ...
#> .. ..$ CI99left : num [1:23] 3.45e+08 5.11e+08 5.55e+08 0.00 0.00 ...
#> .. ..$ CI99right : num [1:23] 6.14e+08 1.17e+09 1.09e+09 0.00 2.45e+08 ...
#> .. ..$ CI95left : num [1:23] 3.77e+08 5.90e+08 6.19e+08 0.00 6.70e+06 ...
#> .. ..$ CI95right : num [1:23] 5.82e+08 1.09e+09 1.03e+09 0.00 2.13e+08 ...
#> .. ..$ CI68left : num [1:23] 4.28e+08 7.14e+08 7.20e+08 0.00 5.74e+07 ...
#> .. ..$ CI68right : num [1:23] 5.32e+08 9.70e+08 9.27e+08 0.00 1.62e+08 ...
#> ..$ domdat :'data.frame': 3210 obs. of 19 variables:
#> .. ..$ PLT_CN : chr [1:3210] "40404728010690" "40404729010690" "40404730010690" "40404731010690" ...
#> .. ..$ CONDID : num [1:3210] 1 1 1 1 1 1 1 1 1 2 ...
#> .. ..$ CONDPROP_UNADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ SUBPPROP_UNADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ MACRPROP_UNADJ : logi [1:3210] NA NA NA NA NA NA ...
#> .. ..$ MICRPROP_UNADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ ESTN_UNIT : Factor w/ 23 levels "1","3","5","7",..: 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ dem : int [1:3210] 2372 2382 2274 2203 2276 2178 2214 2229 2576 2576 ...
#> .. ..$ tcc : int [1:3210] 0 5 45 0 0 0 0 0 16 16 ...
#> .. ..$ tpi : num [1:3210] 10.625 0.75 -12.125 -0.125 1.25 ...
#> .. ..$ tnt2 : num [1:3210] 1 1 0 1 1 1 1 1 0 0 ...
#> .. ..$ cadjfac : num [1:3210] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ ADJ_FACTOR_SUBP : num [1:3210] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ ADJ_FACTOR_MACR : num [1:3210] 0 0 0 0 0 0 0 0 0 0 ...
#> .. ..$ ADJ_FACTOR_MICR : num [1:3210] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ CONDPROP_ADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ COND_STATUS_CD : int [1:3210] NA 1 1 NA NA NA NA NA NA 1 ...
#> .. ..$ TOTAL : num [1:3210] NA 1 1 NA NA NA NA NA NA 1 ...
#> .. ..$ VOLCFNET_TPA_live_ADJ: num [1:3210] NA 41.8 1563 NA NA ...
#> ..$ plotweights :List of 1
#> .. ..$ areaweights: num(0)
#> ..$ estvar : chr "VOLCFNET"
#> ..$ estvar.filter: chr "STATUSCD == 1"
#> ..$ module : chr "MA"
#> ..$ esttype : chr "TREE"
#> ..$ MAmethod : chr "greg"
#> ..$ predselectlst:List of 1
#> .. ..$ totest:Classes ‘data.table’ and 'data.frame': 23 obs. of 6 variables:
#> .. .. ..$ ESTN_UNIT: Factor w/ 23 levels "1","3","5","7",..: 1 2 3 4 5 6 7 8 9 10 ...
#> .. .. ..$ TOTAL : num [1:23] 1 1 1 1 1 1 1 1 1 1 ...
#> .. .. ..$ dem : num [1:23] -0.146 0.2523 -0.1275 0.3033 0.0549 ...
#> .. .. ..$ tcc : num [1:23] 31.28 26.62 2.84 16.98 30.97 ...
#> .. .. ..$ tpi : num [1:23] 17.2169 -11.0096 -1.3899 0.0277 12.873 ...
#> .. .. ..$ tnt2 : num [1:23] 47.3 -109 -673.1 -529.7 66.7 ...
#> .. .. ..- attr(*, ".internal.selfref")=<externalptr>
#> ..$ rowvar : chr "TOTAL"
#> ..$ colvar : chr "NONE"
#> ..$ areaunits : chr "acres"
#> ..$ estunits : Factor w/ 23 levels "1","3","5","7",..: 1 2 3 4 5 6 7 8 9 10 ...
#> $ statecd: int 56
#> $ invyr : int [1:3] 2011 2012 2013
# Use GREG Elastic Net Estimator to Estimate basal area of live trees in our
# population
mod2 <- modMAtree(MApopdat = MApopdat,
MAmethod = "gregEN",
estvar = "BA",
estvar.filter = "STATUSCD == 1")
#> COND_STATUS_CD == 1
#> filter removed 2620 records: COND_STATUS_CD == 1
#> COND_STATUS_CD == 1
#> multiplying BA by TPA
#> STATUSCD == 1
#> generating estimates using mase::gregElasticNet function...
#> using the following predictors...dem, tcc, tpi, tnt2
#> getting output...
str(mod2)
#> List of 4
#> $ est :Classes ‘data.table’ and 'data.frame': 23 obs. of 3 variables:
#> ..$ ESTN_UNIT : chr [1:23] "1" "11" "13" "15" ...
#> ..$ Estimate : num [1:23] 34485230 46562509 73605960 308998 5381024 ...
#> ..$ Percent Sampling Error: num [1:23] 8.86 13.04 11.12 84.58 58.63 ...
#> ..- attr(*, ".internal.selfref")=<externalptr>
#> ..- attr(*, "sorted")= chr "ESTN_UNIT"
#> $ raw :List of 13
#> ..$ unit_totest :'data.frame': 23 obs. of 18 variables:
#> .. ..$ ESTN_UNIT : chr [1:23] "1" "11" "13" "15" ...
#> .. ..$ nhat : num [1:23] 12.505 25.345 12.412 0.216 4.191 ...
#> .. ..$ nhat.var : num [1:23] 1.2275 10.9171 1.9067 0.0335 6.037 ...
#> .. ..$ NBRPLT : int [1:23] 133 85 290 70 58 128 86 132 175 79 ...
#> .. ..$ NBRPLT.gt0: int [1:23] 24 26 49 2 6 22 2 37 7 2 ...
#> .. ..$ ACRES : num [1:23] 2757613 1837124 5930088 1428579 1283969 ...
#> .. ..$ AREAUSED : num [1:23] 2757613 1837124 5930088 1428579 1283969 ...
#> .. ..$ est : num [1:23] 34485230 46562509 73605960 308998 5381024 ...
#> .. ..$ est.var : num [1:23] 9.33e+12 3.68e+13 6.71e+13 6.83e+10 9.95e+12 ...
#> .. ..$ est.se : num [1:23] 3055243 6070050 8188560 261346 3154761 ...
#> .. ..$ est.cv : num [1:23] 0.0886 0.1304 0.1112 0.8458 0.5863 ...
#> .. ..$ pse : num [1:23] 8.86 13.04 11.12 84.58 58.63 ...
#> .. ..$ CI99left : num [1:23] 26615447 30927097 52513628 0 0 ...
#> .. ..$ CI99right : num [1:23] 42355014 62197921 94698292 982181 13507150 ...
#> .. ..$ CI95left : num [1:23] 28497065 34665430 57556678 0 0 ...
#> .. ..$ CI95right : num [1:23] 40473396 58459588 89655242 821227 11564242 ...
#> .. ..$ CI68left : num [1:23] 31446920 40526100 65462782 49100 2243746 ...
#> .. ..$ CI68right : num [1:23] 37523541 52598918 81749137 568895 8518301 ...
#> ..$ domdat :'data.frame': 3210 obs. of 19 variables:
#> .. ..$ PLT_CN : chr [1:3210] "40404728010690" "40404729010690" "40404730010690" "40404731010690" ...
#> .. ..$ CONDID : num [1:3210] 1 1 1 1 1 1 1 1 1 2 ...
#> .. ..$ CONDPROP_UNADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ SUBPPROP_UNADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ MACRPROP_UNADJ : logi [1:3210] NA NA NA NA NA NA ...
#> .. ..$ MICRPROP_UNADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ ESTN_UNIT : Factor w/ 23 levels "1","3","5","7",..: 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ dem : int [1:3210] 2372 2382 2274 2203 2276 2178 2214 2229 2576 2576 ...
#> .. ..$ tcc : int [1:3210] 0 5 45 0 0 0 0 0 16 16 ...
#> .. ..$ tpi : num [1:3210] 10.625 0.75 -12.125 -0.125 1.25 ...
#> .. ..$ tnt2 : num [1:3210] 1 1 0 1 1 1 1 1 0 0 ...
#> .. ..$ cadjfac : num [1:3210] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ ADJ_FACTOR_SUBP: num [1:3210] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ ADJ_FACTOR_MACR: num [1:3210] 0 0 0 0 0 0 0 0 0 0 ...
#> .. ..$ ADJ_FACTOR_MICR: num [1:3210] 1 1 1 1 1 1 1 1 1 1 ...
#> .. ..$ CONDPROP_ADJ : num [1:3210] 1 1 1 1 1 1 1 1 0.75 0.25 ...
#> .. ..$ COND_STATUS_CD : int [1:3210] NA 1 1 NA NA NA NA NA NA 1 ...
#> .. ..$ TOTAL : num [1:3210] NA 1 1 NA NA NA NA NA NA 1 ...
#> .. ..$ BA_TPA_live_ADJ: num [1:3210] NA 14.3 119.7 NA NA ...
#> ..$ plotweights :List of 1
#> .. ..$ areaweights: num(0)
#> ..$ estvar : chr "BA"
#> ..$ estvar.filter: chr "STATUSCD == 1"
#> ..$ module : chr "MA"
#> ..$ esttype : chr "TREE"
#> ..$ MAmethod : chr "gregEN"
#> ..$ predselectlst:List of 1
#> .. ..$ totest:Classes ‘data.table’ and 'data.frame': 23 obs. of 6 variables:
#> .. .. ..$ ESTN_UNIT: Factor w/ 23 levels "1","3","5","7",..: 1 2 3 4 5 6 7 8 9 10 ...
#> .. .. ..$ TOTAL : num [1:23] 1 1 1 1 1 1 1 1 1 1 ...
#> .. .. ..$ dem : num [1:23] -0.0084 0.0135 -0.0057 0.0224 0.016 ...
#> .. .. ..$ tcc : num [1:23] 1.962 1.36 0.706 1.3 1.945 ...
#> .. .. ..$ tpi : num [1:23] 0 0 -0.692 0.133 0 ...
#> .. .. ..$ tnt2 : num [1:23] 0 0 0 -18.3 0 ...
#> .. .. ..- attr(*, ".internal.selfref")=<externalptr>
#> ..$ rowvar : chr "TOTAL"
#> ..$ colvar : chr "NONE"
#> ..$ areaunits : chr "acres"
#> ..$ estunits : Factor w/ 23 levels "1","3","5","7",..: 1 2 3 4 5 6 7 8 9 10 ...
#> $ statecd: int 56
#> $ invyr : int [1:3] 2011 2012 2013
# }